EVERY LARGE SET OF EQUIDISTANT (0, +1, -1)-VECTORS FORMS A SUNFLOWER

by

M. DEZA and P. FRANKL

C. N. R. S. Paris, 75007 15 Quai Anatole France

Received 16 July 1980

A theorem of Deza asserts that if $H_1, ..., H_m$ are s-sets any pair of which intersects in exactly d elements and if $m \ge s^2 - s + 2$, then the H_i form a Δ -system, i.e. $\left| \bigcap_{i=1}^m H_i \right| = d$. In other words, every large equidistant (0, 1)-code of constant weight is trivial. We give a (0, +1, -1) analogue of this theorem.

1. Introduction

An equidistant (0, 1) code is a set $A = \{a_1, ..., a_m\}$ of (0, 1) vectors in \mathbb{R}^n each having the same number s of non-zero entries such that the scalar products (a_i, a_i) have the same value d $(1 \le i < j \le m)$. Deza [2] proved

Theorem 1.1. If s=2d, $m>d^2-d+1$, then for an equidistant code A we can find d positions $1 \le i_1 < ... < i_d \le n$ such that all the vectors in A have 1 in these positions.

A slight modification of the argument in [2] gives

Theorem 1.1'. If $A = \{a_1, ..., a_m\}$ is an equidistant code with

$$m > \max\{d+2, (s-d)^2+(s-d)+1\}$$

then we can find d positions $1 \le i_1 < ... < i_d \le n$ such that all the vectors in A have 1 in these positions.

For large n the bound is sharp if and only if $(d+2) \ge (s-d)^2 + (s-d) + 1$ or there exists a projective plane of order s-d (van Lint [6]). For some more results on this topic see the survey paper [3]. A. J. Hoffman [5] asked how this results extend to (0, +1, -1)-vectors, in view of applications to eigenvalues of directed graphs.

The main result of this paper is

Theorem 1.2. Suppose $B = \{b_1, b_2, ..., b_m\}$ is a set of (0, +1, -1)-vectors in \mathbb{R}^n . Suppose that for some integers s, d with $s > d \ge 1$ we have

$$(b_i, b_i) = s$$
, $(b_i, b_j) = d$ for every $1 \le i \ne j \le m$.

AMS subject classification (1980): 05 C 65; 05 C 35, 05 B 25

If $m>\max\{(s-d)^2+(s-d)+1, (s-d)(d+2)\}$, then we can find d positions $1 \le i_1 < i_2 < ... < i_d \le n$ such that for every $1 \le j \le d$ all the vectors have the same non-zero i_j 'th entry.

The case d < 0 is much simpler. The answer is

Theorem 1.3 [1]. Suppose $B = \{b_1, b_2, ..., b_m\}$ is as in Theorem 1.2, $s \ge 1$ but $d \le -1$. Then $m \le [1-s/d]$, and this is best possible for large n.

In fact Delsarte, Goethals, Seidel prove this theorem in a much more general setting, using Gegenbauer polynomials. (They consider the case of vectors in \mathbb{R}^n of equal length with given set A of values of pairwise scalar products. The special case $A = \{\pm d\}$ is exactly the case of a set of equiangular lines, i.e. equidistant set of points in the elliptic space \mathbb{E}^{n-1} .) We give an elementary proof.

In the case d=0 obviously $m \le n$. The case of equality corresponds to the so-called weighing matrices, W(n, s). In the case s=n a weighing matrix is just a Hadamard matrix of order n. For more information about weighing matrices confer [4].

2. The proof of Theorem 1.3

Set $v=b_1+b_2+...+b_m$. Then $(v,v)\ge 0$, or, equivalently

$$(1) ms + m(m-1)d \ge 0.$$

Dividing by m(-d) and rearranging we obtain $m \le 1 + \frac{s}{-d}$. As m is an integer we also have $m \le [1 - (s/d)]$, proving (1).

To show that (1) is best possible we have to construct m=[1-(s/d)] (0, +1, -1)-vectors $b_1, b_2, ..., b_m$ such that $(b_i, b_i)=s$ and $(b_i, b_j)=d$ for $1 \le i, j \le m$, $i \ne j$. We represent these vectors as the rows of a matrix M.

Every column of M will have at most 2 non-zero entries, more exactly for every (i,j), $1 \le i < j \le m$ M contains -d columns with 1 in the i'th, -1 in the j'th positions, and for every $1 \le i \le m$ it contains s+d[s/-d] columns with +1 in the i'th position and zeros elsewhere, and it contains no other columns. Thus M is defined up to the order of columns, but this does not affect the scalar products of the rows. Every row contains (m-1)d+s+d[s/-d]=s non-zero entries, and for any two different rows there are -d columns where none of them has zero. Moreover these two non-zero entries have opposite signs, giving scalar product d.

Remark 2.1. The proof of Theorem 1.3 shows that if m=1-(s/d) then necessarily $b_1+b_2+...+b_m$ is the all-zero vector.

3. Some lemmas

Definition 3.1. For $1 \le i \le n$, and a collection of (0, 1, -1)-vectors $B = \{b_1, b_2, ..., b_m\}$ let $q_i^0(B)$, $q_i^+(B)$, $q_i^-(B)$ denote the number of vectors which have 0, +1, -1, respectively, in the *i*'th coordinate. If it causes no confusion we simply write q_i^0, q_i^+, q_i^- or q^0, q^+, q^- if the current value of *i* is clear from the context.

Lemma 3.2. Suppose $B = \{b_1, b_2, ..., b_m\}$ is as in Theorem 2, then

(2)
$$(q^0 + q^-)m(s-d) \ge (2q^- + q^0)^2 q^+.$$

Corollary 3.3. With the same notation as in Lemma 3.2 we have

(3)
$$(q^0 + q^+)m(s-d) \ge (2q^+ + q^0)^2 q^-.$$

Proofs of the lemma and the corollary. Let us define δ_j for $1 \le j \le m$ such that $\delta_j = q^0 + q^-$ if b_j has +1 in the *i*'th position and $\delta_j = -q^+$ otherwise. Let b_j' be the vector which agrees with b_j in every position except possibly in the *i*'th position, where it has 0. Set $v = \sum_{1 \le j \le m} \delta_j b_j'$. Let us expand the inequality $(v, v) \ge 0$. We obtain

$$\begin{split} (q^0+q^-)^2q^+(s-1)+(q^0+q^-)^2q^+(q^+-1)(d-1)+(q^+)^2q^-(s-1)+\\ &+(q^+)^2q^0s+(q^+)^2q^-(q^--1)(d-1)+(q^+)^22q^-q^0d+\\ &+(q^+)^2q^0(q^0-1)d-2(q^+)^2(q^-+q^0)q^0d-\\ &-2(q^+)^2(q^-+q^0)q^-(d+1)\geqq 0. \end{split}$$

After rearranging and dividing by q^+ (if $q^+=0$ the lemma holds trivially) we obtain

$$(q^0+q^-)(q^++q^0+q^-)(s-d)-(2q^-+q^0)^2q^+ \ge 0.$$

As $m=q^++q^0+q^-$ the statement of the lemma is proved. Now the corollary follows applying the lemma to $B^-=\{-b_1, -b_2, ..., -b_m\}$.

Remark 3.4. Actually Lemma 3.2 is a direct consequence of the following statement: Let $V = \{v_1, v_2, ..., v_n\}$ be a set of real vectors in \mathbf{R}^n such that all the Euclidean distances $\|v_i - v_j\|$ are the same, say f. Suppose there are g_x vectors which have x in the i'th position $(1 \le i \le n)$. Then we have the following inequality for the harmonical mean

Harm
$$(q_x, q_y) = \frac{2}{\frac{1}{q_x} + \frac{1}{q_y}} \le \left(\frac{f}{x - y}\right)^2$$

for arbitrary real numbers x, y. (The proof uses a negative type inequality (see [7]) for the square of Euclidean distance.) In our case $||v_i|| = s$ and so $f^2 = 2s - 2d$. Thus $(q_x + q_y)/q_x q_y \ge (x - y)^2/(s - d)$. In the special case of (0, 1) vectors it becomes $q_{+1}(m - q_{+1}) \le (s - d)m$, which is the inequality of [2, Lemma 3.1] crucial for the proof of Theorem 1.1.

Lemma 3.5. Suppose $B = \{b_1, b_2, ..., b_m\}$ is as in Theorem 2 and that

$$m > \max \{(s-d)^2 + (s-d) + 1, (s-d)(d+2)\},\$$

then for every $1 \le i \le n$ either

(4)
$$\max(q^-, q^+) \ge m - (s - d + 1)$$

or
(5) $\max(q^-, q^+) \le (s - d + 1)$,

or $d = 1, s \le 3$.

Proof. By symmetry reasons we may assume $q^- \le q^+$. Suppose the statement of the Lemma is not true i.e. $s-d+2 \le q^+ \le m-s+d-2$. Using lemma 3.2 we deduce

$$m(s-d) \ge q^+(2q^-+q^0)^2/(q^-+q^0) \ge q^+(q^0+q^-) \ge (s-d+2)(m-s+d-2).$$

Rearranging and using the fact that m is an integer we deduce

$$m \leq \left[\frac{1}{2}(s-d+2)^2\right].$$

Now for s-d>2

$$(s-d+1)(s-d)+1 > \frac{1}{2}(s-d+2)^2$$
,

while, for
$$s-d \le 2$$
, $(d+2)(s-d) \ge \left[\frac{1}{2}(s-d+2)^2\right]$, except for $d=1$, $s \le 3$.

Definition 3.6. We say i is light (heavy) if $1 \le i \le n$ and (5) ((4), respectively) holds in Lemma 3.5.

Definition 3.7. We say b_j contributes to the heavy position i if its i'th entry is non-zero and of the same sign as the majority of non-zero i'th entries.

Lemma 3.8. Suppose $B = \{b_1, ..., b_m\}$ is as in Theorem 1.2 and that

$$m > \max\{(s-d)^2 + (s-d) + 1, (d+2)(s-d)\},\$$

then every b_i contributes to at least d heavy positions, or d=1, $s \le 3$.

Proof. Arguing indirectly we may assume that, for example, b_1 contributes to only d-t heavy columns with $1 \le t \le d$. As $(b_i, b_1) = d$ for $2 \le i \le m$, b_i agrees with b_1 in at least t of the remaining s-d+t non-zero positions of b_1 . Thus, using Lemma 3.5 $(s-d+t)(s-d) \ge (m-1)t$, yielding $m \le (s-d)^2 + (s-d) + 1$, a contradiction.

Lemma 3.9. Suppose $B = \{b_1, b_2, ..., b_m\}$ is as in Theorem 2 and that

$$m > \max\{(s-d)^2 + (s-d) + 1, (d+2)(s-d)\},\$$

then there are at most d heavy positions unless d=1, $s \le 3$.

Proof. Suppose the contrary and let $i_1, i_2, ..., i_{d+1}$ be heavy positions. Changing the signs of all the entries in some of these columns we may assume $q_{i_t}^+ \ge m - s + d$ for $1 \le t \le d+1$.

For $1 \le t \le d+1$ let A_t be the set of integers j, $1 \le j \le m$, for which b_j has not +1 in the i_t' th position. Let us set $A_0 = \{1, 2, ..., m\} - \bigcup_{t=1}^{d+1} A_t$.

We break the proof into three propositions.

Proposition 3.10. $|A_0| \le s - d$.

Proof. Suppose the contrary and let $j_1, j_2, ..., j_{s-d+1} \in A_0$. For $1 \le t \le s-d+1$ let a_t be the vector which agrees with b_{j_t} except that it has 0 in the i_t 'th position for l=1, ..., d+1. Then $(a_t, a_t) = s-d-1$ and $(a_t, a_{t'}) = -1$ for $1 \le t \ne t' \le s-d+1$, contradicting Theorem 1.3.

From the above, Lemma 3.9 and Theorem 1.2 easily follow for

$$m > \max\{(s-d)^2 + (s-d) + 1, (d+2)(s-d+1)\}.$$

In order to get the sharp result, we need more technical propositions.

Proposition 3.11. If $|A_0| = s - d$ then the A_s 's are pairwise disjoint.

Proof. By Remark 2.1, the fact $|A_0| = s - d$ implies $\sum_{\substack{1 \le l \le s - d \ (b_j, b_i) = d}} a_l = 0$. Let us choose $1 \le j \le m$ such that it is contained in two different A_t 's. Then $(b_j, b_{i_l}) = d$ implies $(b_j, a_l) \ge 1$ for $1 \le l \le s - d$. But this leads to $0 = (b_j, \sum a_l) \ge s - d$, a contradiction. Now Proposition 3.10 yields $\max_{1 \le l \le d+1} |A_t| > s - d$, thus by Lemma 3.5 we have $\max_{1 \le l \le d+1} |A_l| = s - d + 1$. By symmetry we assume $|A_1| = s - d + 1$.

Proposition 3.12. For $2 \le t \le d+1$ we have

$$|A_t - A_1| \leq s - d;$$

moreover, if we have equality then $A_t \cap A_1 \neq \emptyset$.

Proof. The contrary would mean that for some $2 \le t \le d+1$ we have $s-d \le |A_t| \le \le s-d+1$, and $A_t \cap A_1 = \emptyset$ holds. For $j \in (A_1 \cup A_t)$ let a_j denote the vector we obtain from b_i by putting zero into the i_1 and i_2 th position.

from b_j by putting zero into the i_1 and i_t 'th position. Let us set $w = |A_t| \sum_{j \in A_1} a_j - |A_1| \sum_{j \in A_t} a_j$. Expanding the inequality $(w, w) \ge 0$, and using $(a_j, a_{j'}) \ge d$ for $j \in A_1$, $j' \in A_t$, $(a_j, a_{j'}) \le d - 1$ for $j \ne j' \in A_1$ or $j \ne j' \in A_t$, and $(a_j, a_j) \le s - 1$ for $j \in (A_1 \cup A_t)$ we obtain a contradiction.

Now from the first part of Proposition 3.12 we deduce

$$\left| \bigcup_{1 \le j \le d+1} A_j \right| \le |A_1| + \sum_{2 \le j \le d+1} |A_j - A_1| \le (s-d)(d+1) + 1.$$

Thus $|A_0| \ge s-d$. Using Propositions 3.10 and 3.11 we deduce $|A_0| = s-d$ and the sets A_t are pairwise disjoint. Hence by the second part of Proposition 3.12 we have $|A_t - A_1| \le s-d-1$, yielding $|A_0| \ge s-d+1$, in contradiction with Proposition 3.10. This proves Lemma 3.9.

4. The proof of Theorem 1.2

Suppose first $(s, d) \neq (2, 1)$ or (3, 1). Then by Lemma 3.9 there are at most d heavy positions and by Lemma 3.8 every vector contributes to at least d, i.e. to each of them. Hence there are d positions in which all the vectors have the same non-zero entry. This concludes the proof for this case.

If s=2, d=1 then by symmetry we assume $b_1=(1, 1, 0, 0, ..., 0)$. As $(b_i, b_1)=1$ for i=2, 3, again by symmetry we may assume $b_2=(1, 0, 1, 0, ..., 0)$, $b_3=(1, 0, 0, 1, 0, ..., 0)$. But now $(b_i, b_j)=1$ for $1 \le i \le 3$, $4 \le j \le m$ yields that all the b_j 's have 1 in the first position.

For s=3, d=1 suppose first that there are two rows which have in some position +1 and -1, respectively. By symmetry we may assume it is the

first position and the vectors are b_1 , b_2 . As $(b_1, b_2) = 1$, $b_1 = (1, 1, 1, 0, ..., 0)$, $b_2 = (-1, 1, 1, 0, ..., 0)$. For $i \ge 3$ $(b_i, b_1) = 1$, $(b_i, b_2) = 1$ yields that b_i has (0, 1, 0) or (0, 0, 1) in the first 3 positions. As $m \ge 8$ one of these possibilities occurs at least 3 times: say the first one and for b_3 , b_4 , b_5 . If not all the vectors have 1 in the second position then we may assume $b_6 = (0, 0, 1, 1, 1, 0, ..., 0)$. As $(b_j, b_6) = 1$ for j = 3, 4, 5 we may as assume b_3 and b_4 have both 1 in the fourth position, and consequently $b_3 = (0, 1, 0, 1, 0, 1, 0, ..., 0)$, $b_4 = (0, 1, 0, 1, 0, -1, 0, ..., 0)$. But then b_5 cannot have 1 in the fourth position, we may assume $b_5 = (0, 1, 0, 0, 1, 0, 1, 0, ..., 0)$. Now the only possible choice for b_7 is (0, 1, 0, 0, 1, 0, -1, 0, ..., 0), thus $m \le 7$, a contradiction.

If in every position all the non-zero entries are equal then, possibly changing their signs simultaneously, we may assume that all the b_i 's are (0, 1)-vectors. We may suppose $b_1=(1, 1, 1, 0, ..., 0)$. As $(b_i, b_1)=1$ for $2 \le i \le 8$, there are at least 3 vectors which have 1 in the same of the first three positions. By symmetry we may assume

$$b_2 = (1, 0, 0, 1, 1, 0, ..., 0), b_3 = (1, 0, 0, 0, 0, 1, 1, 0, ..., 0),$$

$$b_4 = (1, 0, 0, 0, 0, 0, 0, 1, 1, 0, ..., 0).$$

Now $(b_i, b_j)=1$ for i=1, 2, 3, 4 and $4 \le j \le m$ gives that all the b_j 's have 1 in the first position, which concludes the proof of Theorem 1.2.

Remark 4.1. For large n the bound given by Theorem 1.2 is best possible. For d < s/2 we can take the incidence vectors of a projective space of order s-d (if it exists) plus d-1 columns of entirely ones. For $d \ge s/2$ we give the vectors as the rows of the following matrix N.

Let J_r be the r by r all ones matrix and I_r the r by r identity matrix. We define the first d+2 columns of N by (s-d)-fold repetition of each row of $J_{d+2}-I_{d+2}$. In order to construct the remaining columns of N, we use the matrix M constructed in the proof of Theorem 3 with the following parameters: the rows have weight s-d-1 and the scalar product of each pair of rows is equal to -1. We define the right half of N to be the Kronecker product of I_{s-d} by M, i.e. the block-diagonal matrix with M in each of the s-d diagonal blocks.

Now N has (s-d)(d+2) rows, every row contains (d+1)+(s-d-1)=s non-zero entries and all the scalar products of different rows are equal to d. For s=4, d=2

$$N = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & -1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & -1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}$$

References

- [1] P. DELSARTE, J-M. GOETHALS and J. J. SEIDEL, Spherical codes and designs, Geometriae Dedicata 6 (1977) 363-368.
- [2] M. Deza, Une propriété extrémale des plans projectifs finis dans une classe de codes equidistants, Discrete Math. 6 (1973) 343-352.
- [3] M. Deza, R. C. Mullin and S. A. Vanstone, Recent results on (r, λ) -designs and related configurations, to appear.
- [4] A. V. GERAMITA and J. SEBERRY, Orthogonal designs, Marcel Dekker Inc., New York and Basel, 1979.
- [5] A. J. HOFFMAN, private communication.
- [6] J. H. VAN LINT, A theorem on equidistant codes, Discrete Math. 6 (1973) 353—358.
 [7] I. J. SCHOENBERG, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938) 522—536.